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Abstract In this article we present a computational study for solving the distance-depen-
dent rearrangement clustering problem using mixed-integer linear programming (MILP).
To address sparse data sets, we present an objective function for evaluating the pair-wise
interactions between two elements as a function of the distance between them in the final
ordering. The physical permutations of the rows and columns of the data matrix can be mod-
eled using mixed-integer linear programming and we present three models based on (1) the
relative ordering of elements, (2) the assignment of elements to a final position, and (3) the
assignment of a distance between a pair of elements. These models can be augmented with
the use of cutting planes and heuristic methods to increase computational efficiency. The per-
formance of the models is compared for three distinct re-ordering problems corresponding
to glass transition temperature data for polymers and two drug inhibition data matrices. The
results of the comparative study suggest that the assignment model is the most effective for
identifying the optimal re-ordering of rows and columns of sparse data matrices.

Keywords Clustering · Mixed-integer linear programming · Sparse data sets

1 Introduction

Problems of data organization and data clustering are prevalent across a number of different
disciplines. These areas include pattern recognition [1], image processing [2], information
retrieval [3], microarray gene expression [4], and protein structure prediction [5,6] to name
a few. The goal of data clustering, regardless of the application, is to organize data in such
a way that the similar data points group together. Once a similarity measure between two
data points has been defined, there are a number of techniques that have been proposed for
clustering.
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The first major category of clustering techniques is hierarchical clustering [4]. These
approaches yield a series of nested clusters, graphically illustrating the distance between
them. Partitioning clustering techniques, in contrast, separate data points into clusters using
a fixed number of partitions. The k-means algorithm is the most common choice for parti-
tioning clustering algorithms due to its ease of implementation and the linear dependence of
the runtime on the number of data points [7]. Many other data clustering approaches have
been introduced, including model-based clustering [8,9], neural networks [10], simulated
annealing [11], and even genetic algorithms [12,13]. Recently, novel clustering methods
based on global optimum search and decomposition principles were introduced and applied
to microDNA array data for yeast [14–16]. A comprehensive review of clustering methods
can be found elsewhere [17].

Another technique that has been proposed to deal with this problem is rearrangement
clustering. Given a matrix of disordered data, the basic goal of rearrangement clustering has
been to minimize the sum of the pairwise distances between rows by reordering them. The
bond energy algorithm (BEA) was originally proposed to deal with the problem of rearrange-
ment clustering [18]. It has been shown that the rearrangement clustering problem can be
formulated as a traveling salesman problem (TSP) and solved to optimality [19,20]. Alpert
and Kahng proposed a restricted partitioning approach that solved the rearrangement clus-
tering problem through a traveling salesman approach and subsequently determined cluster
boundaries given a pre-specified number of clusters [21]. An algorithm to solve for the cluster
partitions during the traveling salesman problem, TSP+k, has been developed to simulta-
neously address the two problems [22]. Recent work has utilized optimal re-ordering in an
iterative framework for the biclustering of data matrices in systems biology [23,24]. A key
condition in the existing rearrangement clustering methods is that the data matrix needs to
be dense with few missing elements.

Despite the multitude of clustering techniques that have been proposed, they rely upon a
similarity metric that is defined only between two adjacent points. This reliance becomes a
limitation for problems that have copious amounts of missing data. One approach to this prob-
lem is to ignore or marginalize the missing data values. By simply computing the pairwise
distances without including the contributions of missing data, problems with few missing
data values can be addressed.

A second approach is to use interpolation or data imputation methods to replace the miss-
ing data and to utilize the previously mentioned techniques. Singular value decomposition,
K Nearest Neighbors and simple row averaging have been applied to missing data problems
in DNA microarrays with 1–20% missing data [25].

The quadratic assignment problem (QAP), like the traveling salesman problem, is an area
of active study in the field of combinatorial optimization. The generic quadratic assignment
problem can be formulated as shown in Eqs. 1–3 [26]. The binary variables xi j represent
the assignment of object i to position j and the parameter ci jkl is the score associated with
the assignment of a pair of objects to a specific pair of positions. For further analysis of the
quadratic assignment problem the reader is directed to [27–30].

min
1

2
·

∑

i;i �=k

∑

j; j �=l

∑

k

∑

l

ci jkl · xi j · xkl (1)

∑

j

xi j = 1 ∀i (2)
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∑

i

xi j = 1 ∀ j (3)

The models presented in this paper will address quadratic assignment problems that sat-
isfy the relationship in Eq. 4, which defines a distance between i and k if object i is assigned
to position j and object k is assigned to position l. This definition represents the distance
between a pair of objects, where the objects are assigned to equally-spaced points on a line.

dik =
∑

j

∑

l

|l − j | · xi j · xkl ∀i, k : i �= k (4)

The proposed objective function assumes the form of Eq. 5, where the product of this
distance and a weight for this distance, cik , is optimized. The formulation of this problem as
a mixed-integer linear programming problem shares some similarities with the single-row
facility layout problem, another specialized form of the quadratic assignment problem. The
interested reader is directed to a recent review for more information on the formulation of
and solution to this class of problems [31].

∑

k

∑

i;i �=k

cik · dik (5)

In this work, we present an objective function to define a distance-dependent rearrange-
ment clustering approach that is designed to handle large amounts of missing data. This
approach has the ability to consider not only the similarity between neighboring rows or
columns of data, but also the similarity of all pairs as a function of the distance between
two rows or columns. Three mixed-integer linear programming formulations are presented
to address the distance-dependent rearrangement clustering problem and the utility of each is
discussed. Specifically, we present a model based on (1) the relative ordering of elements (rel-
ative ordering model), (2) the assignment of elements to a final position (assignment model),
and (3) the assignment of a distance between a pair of elements (indexed-distance model).
We also present cutting planes and heuristic methods to increase computational efficiency of
these models for finding and proving globally optimal solutions to the distance-dependent
rearrangement clustering problem. A comparative study for the methods is presented for
glass transition temperature data [32] and two sparse data matrices provided by Pfizer Inc.
corresponding to compound libraries for candidate drug discovery.

2 Mathematical modeling

In this section, we define the variables and parameters of the distance-dependent rearrange-
ment problem and present the general form of the objective function used to evaluate the
quality of the reordering. We then propose three distinct models for performing the phys-
ical re-ordering of the rows and columns of the data matrix: (1) A relative ordering based
representation, (2) an assignment based representation, and (3) an indexed-distance based
representation. For each model we highlight its attributes in terms of their strengths and
weaknesses for solving the rearrangement problem and also present heuristics and cutting
planes which can assist in the convergence to the globally optimum solution.

2.1 Parameters and variable definitions

The objective function for the distance-dependent rearrangement clustering problem requires
the definition of the appropriate indices, parameters, and continuous variables. The index pair
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(i, j) corresponds to a specific row i and column j of a matrix, where the value of this pair
in the data matrix is denoted as ai, j . The cardinality (or in this case, the dimension) of the
rows and columns of the matrix will be represented as |I | and |J |, respectively. For the sake
of brevity in this section and the remainder of the article, we present the terminology and
mathematical model only for the rows of the matrix, but an analogous representation follows
for the columns since the problems can be solved independently. When computing the simi-
larity between two rows, it is necessary to incorporate the distance between them in the final
arrangement. We define the distance between two rows i and i ′ to be the continuous variable,
di,i ′ , as presented below:

di,i ′ = distance between row i and row i ′ in the final rearrangement

The closest distance between any two rows is equal to 1 (i.e., they are adjacent) the maxi-
mum distance between any two rows is equal to |I | − 1 (i.e., when they are on opposite ends
of the matrix), as shown by the bounds:

1 ≤ di,i ′ ≤ |I | − 1 ∀i, i ′ > i (6)

2.2 Objective function

The objective function for the distance-dependent rearrangement clustering problem is based
on the product of the distance between a pair of rows in a data matrix and a similarity measure
for this pair of rows. The major distinction between the original rearrangement clustering
problem and the objective function presented here is the necessity to include the similarity
values for non-neighboring elements as a function of the distance between them, di,i ′ . The
general form for the objective function for this problem is presented in Eq. 7.

min
∑

i

∑

i ′

∑

j

θ(di,i ′) · φ(ai, j , ai ′, j ) (7)

In this equation, the parameters ai, j and ai ′, j denote the data values of the j th column for
rows i and i ′, respectively. One possible form for each of the component functions, θ(di,i ′)
and φ(ai, j , ai ′, j ), is shown in Eq. 8.

min
∑

i

∑

i ′

∑

j

|I | − di,i ′

|I | − 1
· (ai, j − ai ′, j )

2 (8)

In this equation, θ(di,i ′) is linear with respect to di,i ′ , achieving a maximum value of 1
when di,i ′ = 1 and a minimum value of 1/(|I | − 1) when di,i ′ = |I | − 1. The term θ(di,i ′)
can be thought of as a weighting factor between two rows that decreases with increasing
distance between them in the final rearrangement. The parameter φ(ai, j , ai ′, j ) in Eq. 8 is the
pairwise squared difference between the two rows. Other forms of θ(di,i ′) and φ(ai, j , ai ′, j )

could be introduced if problem-specific details suggest they would be more appropriate. The
only restrictions on θ(di,i ′) is that it is a linear function in di,i ′ .

2.3 Model 1: relative ordering representation

The first mathematical model we present for the distance-dependent rearrangement cluster-
ing problem is based on the relative ordering of rows in the final arrangement. We define the
binary variable, yi,i ′ , to indicate whether row i is placed before row i ′ in the final ordering,
as shown below:
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yi,i ′ =
{

1, if row i occurs before i ′ in the final ordering
0, otherwise

Note that this does not provide any information regarding the final positions of rows i and
i ′. To model this, we define positive variables, pi , to denote the final position of row i in the
data matrix.

pi = position of row i in the final ordering

Where the values for the final positions are bounded by:

1 ≤ pi ≤ |I | ∀i > 1 (9)

From these final positions, we can also define the distance between any two rows i and i ′ in
the final arrangement by the positive variable di,i ′ . The distance between two final positions
i and i ′ is given by the nonlinear equation di,i ′ = |pi − pi ′ |. However, exact lower bounds
on this distance can be represented by two linear inequality constraints, as shown in Eqs. 10
and 11.

di,i ′ ≥ pi − pi ′ ∀i < i ′ (10)

di,i ′ ≥ pi ′ − pi ∀i < i ′ (11)

We can define upper bounds on the distance variables by utilizing the information regarding
the relative ordering of the rows i and i ′, represented by the binary variables yi,i ′ , and big
M constraints. Therefore, if row i ′ is placed above row i in the final arrangement, then its
distance is exactly equal to the difference between positions, pi − pi ′ , and vice versa. This
is represented mathematically by Eqs. 12 and 13.

di,i ′ ≤ pi − pi ′ + M · yi,i ′ ∀i < i ′ (12)

di,i ′ ≤ pi ′ − pi + M · (1 − yi,i ′) ∀i < i ′ (13)

One can observe that either Eqs. 12 or 13 provides an exact upper bound on the distance
between rows i and i ′, depending on which occurs first in the final ordering. The parameter
M is selected so that it is large enough to relax the inequality that is not valid.

An exact equality between the final position of a row and the relative orderings of all other
rows can be derived by simply counting the number of rows that are above row i in the final
arrangement, as shown in Eq. 14, which is based on a network flow [33–37].

pi − 1 =
∑

i ′>i

yi,i ′ +
∑

i ′<i

(1 − yi ′,i ) ∀i (14)

We can derive tighter linear programming relaxations based on distributions of all final posi-
tions and distances. One such constraint utilizes the fact that the summation of all the final
distances is equal to a known constant, Cd(|I |), as shown in Eq. 15.

∑

i

∑

i ′>i

di,i ′ = Cd(|I |) (15)

For instance, if there are only four rows, then Cd(4) = 3 ·1+2 ·2+1 ·3 = 10. Equivalently,
we also know that the sum over all possible final positions must be equal to a known constant,
C p(|I |), as shown in Eq. 16.

∑

i

pi = C p(|I |) (16)
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To alleviate some of the issues associated with problem symmetry, we can restrict that the
final position of the first row lies in the first half of the matrix, as shown in Eq. 17.

1 ≤ p1 ≤ f loor(|I | + 1/2) (17)

2.3.1 Additional cutting planes

The linear programming relaxations can be further tightened by using additional cutting
plane constraints that are specific to this model. These constraints are only added if their
corresponding conditions are violated at the current branch-and-bound node. For instance,
since the distances are Euclidean we can impose the restriction that they satisfy the triangle
inequality constraint in Eq. 18.

di,i ′ ≤ di,i ′′ + di ′′,i ∀i, i ′, i ′′ (18)

However, this results in O(|I |3) additional constraints and leads to memory issues for stan-
dard commercial solvers for even moderately sized problems. To circumvent this memory
issue, we introduce these constraints dynamically during the program execution as cuts. In
other words, we include only those triangle inequality constraints for which Eq. 18 is violated
and this ensures that only the most necessary constraints are added to the problem.

We can also introduce cuts based on bounds on the distances of a single row. Let Ai contain
an arbitrary set of indices i ′, such that i ′ �= i . For instance, in a 4-row problem, the sum of
the distances between row 1 and all other rows must be less than or equal to 3 + 2 + 1 = 6
and greater than or equal to 1 + 1 + 2 = 4. Similarly, the sum of any two distances between
row 1 and two other rows must be less than or equal to 3 + 2 = 5 and greater than or equal
to 1 + 1 = 2.

∑

i ′∈Ai

di,i ′ ≤ FU (|Ai |) ∀i, Ai (19)

∑

i ′∈Ai

di,i ′ ≥ F L(|Ai |) ∀i, Ai (20)

Similarly, we can introduce cuts based on bounds on the distances for all rows. Let B contain
an arbitrary set of index pairs i, i ′, such that i �= i . For instance, in a 4-row problem, the sum
of any 4 pair-wise distances must be less than 3 + 2 + 2 + 1 = 8 and greater than or equal
to 1 + 1 + 1 + 2 = 5.

∑

i,i ′∈B

di,i ′ ≤ GU (|B|) ∀B (21)

∑

i,i ′∈B

di,i ′ ≥ GL(|B|) ∀B (22)

The mixed-integer linear programming problem for the relative ordering based model is the
minimization of the objective function in Eq. 23 over the variables yi,i ′ , pi , and di,i ′ , subject
to the constraints in Eqs. 9 through 22. This model can be solved to global optimality using
existing solvers such as CPLEX [38].

min
yi,i ′ ,pi ,di,i ′

∑

i

∑

i ′

∑

j

|I | − di,i ′

|I | − 1
· (ai, j − ai ′, j )

2 (23)
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2.4 Model 2: assignment representation

The second model we present for the distance-dependent rearrangement clustering problem
is based on an assignment representation [39,40]. In this model, we define binary variables,
yi,k , to represent the assignment of a row i to some position k in the final ordering.

yi,k =
{

1, if row i is assigned to position k in the final ordering
0, otherwise

In definition of this variable, the index k is in the set k = 1 . . . |K |, where |K | = |I |.
Analogous to the relative ordering model presented in Sect. 2.3, the positive variables pi

and di,i ′ denote the final position of row i and the distance between rows i and i ′ in the
final ordering, respectively. For the readers convenience, we present the constraints that are
applicable to this assignment model from Sect. 2.3.

di,i ′ ≥ pi − pi ′ ∀i < i ′ (24)

di,i ′ ≥ pi ′ − pi ∀i < i ′ (25)
∑

i

∑

i ′>i

di,i ′ = Cd(|I |) (26)

1 ≤ p1 ≤ f loor(|I | + 1/2) (27)

An intuitive constraint to impose on the row assignments is that a final position can contain
only one row and a row can be assigned to at most one final position. This is given by Eqs. 28
and 29.

∑

k

yi,k = 1 ∀i (28)

∑

i

yi,k = 1 ∀k (29)

We can relate yi,k to pi using a simple equality constraint as shown in Eq. 30.

pi =
∑

k

k · yi,k ∀i (30)

Another valid constraint on the distance variables can be derived from the fact that once row
i has been assigned to some final position k, then the sum of the distances from position k
to all other positions is known, which we represent as a general function G(k). For instance,
if a row i is assigned to final position 2 in a 4-row problem, then the sum of its distances to
all other rows i ′ in the final arrangement is (2 − 1) + (3 − 2) + (4 − 2) = 4 = G(2). The
general form for this constraint is presented in Eq. 31.

∑

i ′>i

di,i ′ +
∑

i ′<i

di,′i =
∑

k

G(k) · yi,k ∀i (31)

Equation 32 introduces another constraint to provide a valid upper bound on the distance
by incorporating information about the final positions of two row assignments. Let m be the
midpoint of the valid position assignments (i.e., m = (|I |+1)/2). If row i is assigned to final
position k and row i ′ is assigned to final position k′, then the maximum distance between row
i and any other row i ′ must be less than |k − m| + |k′ − m| (i.e., the sum of their distances
to the midpoint).

di,i ′ ≤
∑

k

|k − m| · (
yi,k + yi ′,k

) ∀i, i ′ > i (32)
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2.4.1 Additional cutting planes

As in Sect. 2.3, cutting planes based on triangle inequalities can be added for the distance
variables, as defined in Eq. 18. Another set of constraints which bounds the distances with
respect to a fixed point, 1 ≤ p∗ ≤ |I |, are introduced as cuts into the problem, where p∗ is
chosen during program execution. These cutting planes are a generalization of Eq. 32, where
the midpoint m is replaced by p∗.

di,i ′ ≤
∑

k

∣∣k − p∗∣∣ · (
yi,k + yi ′,k

) ∀i, i ′ > i, p∗ (33)

2.4.2 Additional branching variables

The performance of the proposed mixed-integer linear programming assignment formula-
tion can be enhanced by the definition of symmetry-breaking binary variables. Although this
increases the number of binary variables needed to represent a system, branching on these
new binary variables in a branch-and-bound framework is more informative (i.e., leads to
tighter relaxations) both when branching up (i.e., y = 1) and down (i.e., y = 0). Equation 34
defines the variable ŷi , which is active if row i is assigned to a final position k greater than
the midpoint m and inactive if row i is assigned to a final position k less than or equal to the
midpoint m.

ŷi =
∑

k>m

yik ∀i (34)

The mixed-integer linear programming problem for the assignment based model is the min-
imization of the objective function in Eq. 35 over the variables yi,k , pi , and di,i ′ , subject to
the constraints in Eqs. 24 through 34. This model can be solved to global optimality using
existing solvers such as CPLEX [38].

min
yi,k ,pi ,di,i ′

∑

i

∑

i ′

∑

j

|I | − di,i ′

|I | − 1
· (ai, j − ai ′, j )

2 (35)

2.5 Model 3: indexed-distance representation

The final model we present for the distance-dependent rearrangement clustering problem
is based on incorporating the distance variables as indices of a binary variable. That is, we
define the binary variable, zi,i ′,n to indicate that the distance between two rows i and i ′ is n
in the final ordering, as presented below:

zi,i ′,n =
{

1, if row i and i ′ are separated by a distance n in the final ordering
0, otherwise

In this variable definition, the index n is in the set n = 1 . . . |N |, where |N | = |I |. It should
be noted that the binary variables, zi,i ′,n , are related to the distance variables, di,i ′ , defined in
Sect. 2.1 by Eq. 36. This relationship can be used to rewrite the objective function in Eq. 7 in
terms of zi,i ′,n . Equation 36 does not have to be included as a constraint in the mixed-integer
linear programming formulation, but is presented here for clarity.

∑

n<|N |
zi,i ′,n · (n) = di,i ′ ∀(i, i ′ > i) (36)
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The distance between two rows i and i ′ in the final ordering must be a unique distance and
this is enforced by Eq. 37.

∑

n<|N |
zi,i ′,n = 1 ∀(i, i ′ > i) (37)

We can also infer constraints based on the distribution of the values for the distances. For
instance, we know that there can only exist one distance of |I |−1 (i.e., between the two rows
on opposite ends of the matrix), two distances of |I | − 2, etc. This is generically represented
by Eq. 38.

∑

i

∑

i ′>i

zi,i ′,n = |N | − n ∀(n < |N |) (38)

We can also state that for any distance n ≥ |N |+1
2 , there can only exist at most one point i ′

a distance n away from i . That is, any point i on one side of the midpoint of the matrix can
have only one other point, i ′, of distance n away on the other side of the midpoint. This is
presented in constraint Eq. 39.

∑

i ′>i

zi,i ′,n ≤ 1 ∀
(

i,
|N | + 1

2
≤ n < |N |

)
(39)

However, for all other distances n <
|N |+1

2 , it is possible to have at most two points a distance
n away from i , as shown in Eq. 40.

∑

i ′>i

zi,i ′,n ≤ 2 ∀
(

i, n <
|N | + 1

2

)
(40)

Furthermore, there should exist at least one point i ′ a distance n away from i when n <
|N |+1

2 ,
which is accomplished via Eq. 41.

∑

i ′
(zi,i ′>i,n + zi ′,i>i ′,n) ≥ 1 ∀

(
i, n <

|N | + 1

2

)
(41)

We can also enforce an either/or type of assignment to the distances. In other words, we know
that if row i is assigned to some position n ≤ |N |+1

2 − 1, then it has exactly two other rows
a distance of n and N − n. This is generally written as Eq. 42.

∑

i ′

(
zi,i ′>i,n + zi ′,i>i ′,n + zi,i ′>i,|N |−n + zi ′,i>i ′,|N |−n

)

= 2 ∀
(

i, n <
|N | + 1

2
− 1

)
(42)

2.5.1 Additional cutting planes

The triangle inequalities are also applied to the distance assignments as they are in Sects. 2.3
and 2.4, but here they are expressed in terms of the binary variables zi,i ′,n . The triangle
inequality constraints in this form are shown in Eq. 43. It should be noted that although
the constraints of Eq. 43 are introduced as cutting planes, the indexed-distance model is not
valid without the introduction of these triangle inequalities. Therefore, while the models
presented in Sects. 2.3 and 2.4 can be solved without introducing their respective cutting
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plane constraints, the model presented in this section must have the following cutting plane
constraints.

∑

n<|N |
zi,i ′,n · (n) ≤

∑

n<|N |
zi,i ′′>i,n · (n) +

∑

n<|N |
zi ′′,i ′>i ′′,n · (n)

+
∑

n<|N |
zi ′′,i>i ′′,n · (n) +

∑

n<|N |
zi ′,i ′′>i ′,n · (n) ∀(i ′ > i, i �= i ′′, i ′ �= i ′′) (43)

The mixed-integer linear programming problem for the index-distance based model is the
minimization of the objective function in Eq. 44 over the variables zi,i ′,n subject to the con-
straints in Eqs. 37 through 43. This model can be solved to global optimality using existing
solvers such as CPLEX [38].

min
zi,i ′,n

∑

i

∑

i ′>i

∑

j

|I | − ∑
n<|N | zi,i ′,n · (n)

|I | − 1
· (ai, j − ai ′, j )

2 (44)

2.5.2 Alternate objective functions

One advantage to the indexed-distance formulation is that the objective function can be
quickly altered to evaluate only a subset of neighboring elements in the final arrangement
and can also be extended to a nonlinear form. Equation 45 illustrates the transition from an
arbitrary function of a distance (θ(di,i ′)) to the product of a binary variable (zi,i ′,n) and an
arbitrary function of a constant index (θ(n)).

θ(di,i ′) =
∑

n<|N |
θ(zi,i ′,n · (n)) =

∑

n<|N |
zi,i ′,n · θ(n) ∀(i, i ′ > i) (45)

2.6 Use of heuristics

The general rearrangement problem has a total of N !
2 possible orderings, which makes the

problem difficult but also allows for heuristic methods to easily find integer feasible solu-
tions. In this section, we discuss heuristic techniques based on row swapping for finding
quick integer solutions to help close the integrality gap.

The simplest heuristic is the random swapping of rows. After each swap, we evaluate
the objective function of the new ordering and the swap is accepted if it results in a lower
objective function value. The acceptance criteria of this operation could be altered to allow
for objective function increases based on a probability (a basic Monte Carlo approach), but
the utilization of several initial points was found to be effective in finding good solutions.
Given some ordering of the rows, this basic random swapping operation is a reasonable local
minimization approach.

The initial ordering to minimize via these swapping operations can be generated using the
linear programming relaxations from each node in the branch-and-bound tree. For instance,
the initial ordering for the model based on the assignment representation can be determined
by (1) identifying the two rows with the maximum distance, dii ′ , and fixing these rows to
be the beginning and end of the ordering and (2) sorting the remaining rows based on their
distances to these two fixed endpoints. Similar strategies can be used to establish an initial
ordering for the relative ordering model and the indexed-distance model. This ordering is
then subject to a local minimization via the aforementioned random swapping operations.
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3 Computational studies

To benchmark the performance of the three mathematical models proposed in Sects. 2.3, 2.4,
and 2.5, we applied them to three different sparse re-ordering problems and compared the
computational requirements associated with each model. The data matrices examined in this
section correspond to glass transition temperatures of a polymer library, log(IC50) data and
percent inhibition data for compound libraries in molecular discovery. Each of the proposed
methods utilizes cutting planes and heuristics to identify the best possible ordering, but we
also present the models without the use of cutting planes and heuristics when applicable so
as to illustrate the importance of these components. The problems were selected in order to
represent a broad distribution of sizes, where |I | = 14, 28, and 39 for the problems stud-
ied in this section. All of the problems were solved using CPLEX 9.1 on an Intel 3.2 Ghz
processor.

We will adopt the following convention for the results presented below. The term “cut-
ting planes” and “heuristics” corresponds to the constraints and methods presented in Sect. 2
unless otherwise noted and the term “LP” means linear programming. In the tables presented,
the number of “Applied cuts” corresponds to the number of cutting planes from Sect. 2 that
were applied, the “LP relax time” and “LP relax value” correspond to the time and value
of the linear programming relaxation at the root node, “After cuts value” is the value of the
LP relaxation after applying the cuts defined in Sect. 2 and the cuts applied by CPLEX (i.e.,
Gomory fractional, mixed-integer rounding, etc.), and “Best bound” corresponds to the best
linear programming relaxation value for all nodes.

3.1 Glass transition temperature data

This first data set analyzed by the proposed models is a 14 by 8 data matrix corresponding
to 14 diol and 8 diacid substituent sites of a polymer [32]. The glass transition temperatures
for each polymer (i.e., for a specific diol and diacid) are the property values of this data
matrix. It was previously discovered that there exists a reordering of this polymer library
which exhibits a smooth and regular landscape [41]. We randomly sampled 35 out of the
112 possible compounds (i.e., 31.3% dense) to assess the ability of the proposed methods to
handle sparse data and this matrix is presented in Table 1.

The relative ordering, assignment, and indexed-distance models were applied to the re-
ordering of the rows (i.e., |I | = 14) of this sparse matrix and the computational results are
presented in Table 2. For reference, we also present the results for a general quadratic assign-
ment problem (QAP) model for the same problem. In Table 2 we see that the relative ordering
model results in the smallest problem size with respect to both the number of variables and
constraints and solves the rearrangement problem to global optimality in only 0.4 CPU sec-
onds. However, its root node relaxation of 6,128 is the poorest among the three proposed
methods. The formulation for the indexed-distance model results in the largest number of
constraints and variables, but exhibits a good linear programming relaxation of 10,915 at
the root node. Due to its size, it takes substantially longer than the other three proposed
models to close the integrality gap. For this problem, the assignment model has the best
linear programming relaxation at the root node and solves the problem to global optimality
in the least amount of CPU time (0.16 s). It is interesting to note the improvements in the
linear programming relaxations after the cutting planes are added. After cuts, all methods are
within 1.6% of the optimal integer solution, with the assignment model completely closing
the integrality gap at the root node.
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Table 1 Sparse sampling of the glass transition temperature data matrix from [32], where “–” indicates a
missing element

1 2 3 4 5 6 7 8

1 − − − 55.0 46.0 − − −
2 78.0 42.0 76.0 66.0 − − 47.0 −
3 − − − − − 19.0 − 17.0

4 − − − − 61.0 63.0 − −
5 − − − 21.0 − − − 18.0

6 − − 45.0 − − 33.0 − −
7 91.0 47.0 − − − − − 63.0

8 − − 40.0 − − 30.0 21.0 −
9 − 33.0 − − − − 42.0 −

10 82.0 44.0 − 68.0 − − − 58.0

11 − 36.0 − − − − 46.0 −
12 − − − − 65.0 − 54.0 −
13 − − − 42.0 32.0 − − −
14 − − − − 28.0 − 22.0 −

Table 2 Comparison of solve stats for the proposed models for the rows of the glass transition temperature
data matrix (size 14), using CPLEX 9.1

Relative ordering
(no cuts, no heur)

Assignment
(no cuts, no heur)

Relative
ordering

Assignment Index-distance

Constraints 380 420 380 420 440

Binary variables 91 210 91 210 1183

Continuous variables 105 105 105 105 0

Applied cuts – – 309 252 262

LP relax time (s) 0.01 0.03 0.01 0.03 0.08

LP relax value 6128 13856.8 6128 13857 10915

After cuts value 7525 13901.7 14222 14453 14277

Nodes 78 18 2 0 470

Best integer 14453 14453 14453 14453 14453

Best bound 14453 14453 14453 14453 14453

CPU time (s) 4.0 1.1 0.4 0.16 173.6

To provide a benchmark of the performance of these proposed methods, we present the
results for the relative ordering and assignment models without the use of cutting planes or
heuristics in columns 1 and 2 of Table 2. We see that for the relative ordering model without
cutting planes, the relaxation at the root node is only within 48% of the optimal integer solu-
tion so it takes 78 nodes of branching and 4 CPU seconds to prove optimality for this problem.
Similar results are observed for the assignment model without cuts in Table 2, where the LP
relaxation without cutting planes is within 4% of the optimal integer solution and 18 nodes
of branching are required to close the optimality gap.
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Table 3 Comparison of solve stats for the QAP approaches for the rows of the glass transition temperature
data matrix (size 14)

MILP linearization Branch-and-bound Gilmore-Lawler bound Elimination bound

LP relax time (s) 38.1 – – –

LP relax value 14213 – – –

Best integer 14453 14453 – –

Best bound 14453 14453 11420 11760

CPU time (s) 1264.3 0.11 0.00 0.00

As a basis for comparison with a general quadratic assignment problem model, we applied
two QAP formulations and two rigorous lower bounding methods for the quadratic assign-
ment problem to this data matrix. Specifically, we downloaded Fortran code from the Qua-
dratic Assignment Problem Library (QABLIB) developed by Burkard et al. [42] for (1) a
branch-and-bound algorithm that solves QAPs to optimality for problems less than size 33,
(2) an algorithm that computes the Gilmore-Lawler bound [43], and (3) another algorithm that
computes the elimination bound for quadratic assignment problems. We also implemented
a MILP linearization for the quadratic assignment problem that was reviewed in [29]. The
results for these methods are presented in Table 3. The branch-and-bound algorithm finds the
optimal solution of 14,453 in only 0.11 CPU seconds whereas the MILP linearization takes
1264.3 CPU seconds to find this optimal re-ordering. Both the Gilmore-Lawler bound and
the elimination bounding methods require almost no CPU time and provide bounds within
20.8% and 18.6% of the optimal solution, respectively.

3.2 IC50 inhibition data

The second data matrix studied contains 28 rows and 32 columns of log(IC50) values for an
unknown set of compounds. These values represent the concentrations of these compounds
needed to yield 50% inhibition of an unknown target. In this library, the most desirable com-
pounds are those that achieve the required inhibition at the lowest concentrations (i.e., these
compounds will have the lowest log(IC50) values). Of the possible 896 data values in this
matrix, only 340 (38%) have been synthesized and IC50 measured experimentally.

The results for the proposed models for optimally re-ordering the rows of the IC50 data
matrix (e.g., |I | = 28) are presented in Table 4. The relative ordering model results in the
fewest number of binary variables and also requires the shortest time for solving the linear
programming relaxation at the root node. However, the value of its LP relaxation is at least
33% worse than the other two proposed models. In 10 nodes and 29.91 CPU seconds, the
relative ordering model is able to prove global optimality for this rearrangement clustering
problem. The indexed-distance model results in the largest number of constraints and binary
variables and as a result requires the longest LP relaxation time at the root node. However,
its LP relaxation value at the root node is within 4% of the optimal integer solution and the
use of cutting planes closes the optimality gap at the root node in 100 CPU seconds. The
assignment model is also able to close the optimality gap at the root node after the addition
of cutting planes, but it has an initial LP relaxation within 3% of the optimal integer solution
and only takes 4 CPU seconds.

For comparison, we also presented the performance of the relative ordering and assign-
ment models without the use of cutting planes or heuristic methods in the first and second
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Table 4 Comparison of solve stats for the proposed models for the rows of the IC50 data matrix (size 28),
using CPLEX 9.1

Relative ordering
(no cuts, no heur)

Assignment
(no cuts, no heur)

Relative
ordering

Assignment Indexed-
distance

Constraints 1542 1274 1542 1274 1861

Binary variables 378 812 378 812 10206

Continuous variables 406 406 406 406 0

Applied cuts – – 2313 1527 1417

LP relax time (s) 0.14 0.68 0.14 0.67 2.28

LP relax value 790.1 1190.5 790.1 1190.5 1179.2

After cuts value 813.2 1191.5 1225.2 1229.2 1229.2

Nodes 19026 15 10 0 0

Best integer 1229.2 1229.2 1229.2 1229.2 1229.2

Best bound 1083.0 1229.2 1229.2 1229.2 1229.2

CPU time (s) 7200+ 23.77 29.91 4.17 100.44

Table 5 Comparison of solve stats for the QAP approaches for the rows of the IC50 data matrix (size 28)

MILP
linearization

Branch-
and-bound

Gilmore-Lawler
bound

Elimina-
tion bound

LP relax time (s) – – − −
LP relax value – – − −
Best integer – 1232.3 − −
Best bound – – 1160.6 1129.2

CPU time (s) 7200+ 7200+ 0.00 0.00

columns of Table 4. The value of the LP relaxation for the relative ordering model without
cutting planes results in an optimality gap of 34% at the root node. When allowing this model
to run for 7,200 CPU seconds, it finds the optimal integer solution but still has an optimality
gap of 12% after examining 19,026 nodes. For the assignment model without cuts, the linear
programming relaxation is within 3% of the optimal solution and it only takes 15 nodes of
branching and 23.8 CPU seconds to prove global optimality for this problem.

In an attempt to compare to the quadratic assignment problem algorithms studied in the
previous section, we applied the MILP linearization, branch-and-bound algorithm, Gilmore-
Lawler bound, and elimination bound to the QAP representation of this problem. The MILP
linearization model was too large and violated the internal memory requirements for CPLEX
when attempting to initialize the model. The branch-and-bound algorithm was able to load
the problem but did not return an optimal solution after 7,200 CPU seconds. We then modi-
fied this algorithm to report the best integer solution found after that time, which is 1232.3
as shown in Table 5 and is within 0.3% of optimality. However, we could not obtain a rig-
orous lower bound from this method to determine the corresponding optimality gap. The
Gilmore-Lawler lower bound is within 5.6% and the elimination bound is within 7.6% of
the optimal solution for this problem. We see from Table 5 that the MILP linearization and
branch-and-bound quadratic assignment problem models are unable to address this problem
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(size |I | = 28) and thus will not be applied to any larger problems studied in the remainder
of this article.

3.3 Percent inhibition data

The third data matrix analyzed contains 62 rows and 39 columns, where the columns and
rows correspond to different functional groups that can be appended to two distinct sub-
stitution sites of a molecular scaffold. The data values in this matrix denote the percent
inhibition data for a specific compound, where the selection of a particular row and column
defines a new compound. The most desirable compounds are the strongest inhibitors of an
unknown target, which correspond to the highest percentage inhibition values in this library.
Of the possible 2,418 compounds, only 1,229 (51%) have been synthesized and measured
experimentally.

The results for the proposed models for the optimal rearrangement of the columns of this
data matrix (i.e., |I | = 39) are presented in Table 6. As with the previous matrices, the rela-
tive ordering model results in the fewest number of binary variables and requires the shortest
time for solving the LP relaxation at the root node, which has an optimality gap of 49%.
After cutting planes, the LP relaxation is improved to be within 5% of the optimal integer
solution, however, the model is unable to prove optimality after 7,200 s and 675 nodes of
branching. The indexed-distance problem has 28,158 binary variables, which is more than
12 times the number of binary variables for the other two methods combined. However, it
has an LP relaxation value within 8% of the optimal integer solution which improves to
only 0.2% after the addition of cutting planes. But due to its size it can only branch for 2
nodes in over 7,200 CPU seconds and cannot prove global optimality for this problem. The
assignment model has the best linear programming relaxation of the three models, which
is within 5.5% and 0.1% of global optimality before and after cutting planes, respectively.
Since the LP relaxation time for the assignment model is only one-sixth of the time for the
indexed-distance model, it is able to prove global optimality for this rearrangement problem
in only 1 node and 96 CPU seconds.

Table 6 Comparison of solve stats for the proposed models for the columns of the percent inhibition data
matrix (size 39), using CPLEX 9.1

Relative ordering
(no cuts, no heur)

Assignment
(no cuts, no heur)

Relative
ordering

Assignment Indexed-
distance

Constraints 3005 3120 3005 3120 3704

Binary variables 741 1560 741 1560 28,158

Continuous variables 780 780 780 780 0

Applied cuts – – 10524 5745 3693

LP relax time (s) 0.84 3.87 0.84 3.87 23

LP relax value 0.890E6 1.652E6 0.890E6 1.652E6 1.604E6

After cuts value 0.917E6 1.653E6 1.696E6 1.746E6 1.743E6

Nodes 10994 235 675 1 2

Best integer 2.119E6 1.747E6 1.747E6 1.747E6 1.747E6

Best bound 1.061E6 1.747E6 1.742E6 1.747E6 1.743E6

CPU time (s) 7200+ 541 7200+ 95.6 7200+
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Fig. 1 Original ordering for percent inhibition data matrix. White spaces denote missing elements

We also present the results for the relative ordering and assignment model without the use
of cutting planes and heuristics, as shown in Table 6. Since the relative ordering model was
not able to prove optimality with the use of cutting planes and heuristics, it is no surprise
that is unable to do so without. After 7,200 s of CPU time, it finds a best integer solution
of 2.119E6 and a best relaxation value of 1.061E6, which corresponds to an integrality gap
of 50%. For the assignment model without cutting planes and heuristics, it only requires
235 nodes and 541 CPU seconds to prove global optimality since the linear programming
relaxation is within 5% of optimality at the root node.

To illustrate the utility of re-ordering sparsely sampled data matrices, we also present
the original and optimally re-ordered percent inhibition data in Figs. 1 and 2, respectively.
Note that the optimally re-ordered data matrix over both the rows and columns in Fig. 2
exhibits an excellent grouping of the high inhibition compounds (shown in orange and red)
in the upper-left corner of the matrix. The optimal re-ordering over the rows (e.g., |I | = 62)
was accomplished using the assignment model, which solved it to optimality in 3 nodes and
1,863 CPU seconds. The initial LP relaxation for this problem is 2.441E6 after cuts and
the optimal integer solution is 2.444E6. These re-orderings could be useful for directing
the synthesis of future compounds towards those unknown compounds that gather in this
region.

4 Conclusions

In this article, we have demonstrated how the distance-dependent rearrangement clustering
problem assumes the form of a quadratic assignment problem with special structure. This spe-
cial structure was exploited in the development of three mixed-integer linear programming
(MILP) formulations based on (1) the relative ordering of the rows, (2) the assignment
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Fig. 2 Optimally re-ordered rows and columns for percent inhibition data matrix. White spaces denote missing
elements

of the rows to a final position, and (3) the assignment of a unique distance to a pair of
rows. When applying these models to the rearrangement of three distinct data matrices,
it was shown that the assignment model was the most efficient for finding and proving
the global optimum solution. It was also shown that the relative ordering model resulted
in the minimum number of binary variables and that the indexed-distance model can be
easily extended to more sophisticated forms of the objective function. We have also illus-
trated the utility of incorporating cutting planes and heuristic methods for generating inte-
ger feasible solutions and closing the optimality gap. These models can be utilized in a
number of applications, such as molecular discovery, since the re-orderings group com-
pounds with similar properties in the same regions of the data matrix. For instance, this
re-ordering approach could be combined with local interpolation techniques in an itera-
tive fashion to identify an effective synthesis strategy for the molecular discovery prob-
lem. It is noteworthy that the proposed techniques could be applied to clustering ensem-
bles of conformers resulting from free energy calculations of oligopeptides [44–46] or pro-
teins from multiple sequence alignment [47,48], de novo sequences generated in protein
design with varied lengths [49,50], as well as design and scheduling of batch processes
[51,52].
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